PROPIEDADES FISICAS EN ROCAS DE MINA CHUQUICAMATA.

Miguel Muñoz y Manuel Araneda
Departamento de Geofísica. Universidad de Chile.
Lasilla 2//7. Santiago-Chile.

RESUMEN

Se dan a conocer valores del Módulo de Young (E) y del Coeficiente de Poisson (O) obte nidos a través de la medición de la velocidad de ondas longitudinales y transversales en perfiles de refrección sísmica en Mina Chuquicamata. El pórfido granodiorítico de Chuquicamata, roca huég ped del depósito mineral, es notablemente similar al de Aho, Bingham, Cananea, Chino, Morenci y otros campos de cobre porfírico. Muestras de colpas y de sondajes son ensayadas en laboratorio para obtener características físicas de las rocas, como son la velocidad de propagación de pulsos longitudinales en muestras secas y saturadas, la porosidad y el grado de alteración de la roca. Se discute la relación entre el grado de alteración de las rocas y la velocidad de propagación de pulsos longitudinales en laboratorio, como también algunas hipotéticas zonas de disminución de la velocidad indicadas por los ensayos. Para esclarecer esta situación se emplean ensayos de resistencia en laboratorio. Se comparan, también, valores de velocidad obtenidos "in situ" con valores obtenidos en muestras secas y saturadas en laboratorio.

La formulación de relaciones empíricas es una cuestión usual en el estudio de las propie dades físicas de las rocas. En este trabajo se presentan relaciones empíricas que conectan el Módulo de Young con la velocidad de propagación de ondas longitudinales "in situ". Se establecen in tervalos de aplicación según tal velocidad sea mayor o menor que 1000 m/seg. También se indica la obtención del Coeficiente de Poisson por medio de este proceso.

A continuación se señala la gran discrepancia entre valores del Módulo de Young obtenidos por métodos diversos de compresión estática en laboratorio, sobre todo mediante estampillas "strain gage" y por deflección mecánicamente amplificada (donde el movimiento de un dispositivo en contacto con la muestra es transmitido para producir curvas esfuerzo-desplazamiento en ensayos de resistencia). Se presentan los resultados de ensayos efectuados con muestras de diferentes rocas, observán dose que ellos son menos inestables en el caso de ensayos en brecha que en aquellos realizados con granodiorita.

ABSTRACT

PHYSICAL PROPERTIES OF ROCKS (CHUQUICAMATA MINE)

The Young Modulus (E) and Poisson number (σ) are obtained by means of the longitudinal and shear waves velocities calculated on the ground of refraction profiles realized in Chuquica-

mata Mine. The granodioritic porphyry of Chuquicamata, host rock of the mineral deposit, is notably similar to that of Aho, Bingham, Chino, Morenci and others fields of porphyritic copper. Rock chunks and bore samples are studied in laboratory to obtain physical characteristics of rocks such as longitudinal pulse propagation velocity in dry and wet samples, porosity and alteration index. A relationship between the rock alteration index and the velocity of longitudinal pulses in laboratory is discussed. Some hypothetical low-velocity zones indicated by the measurements done on the bore samples are studied - for this purpose, strength tests in laboratory are employ ed. Another intent of correlation of measurements obtained by different ways is made by comparing "in situ" velocity values with laboratory values from dry and wet samples.

Empirical formulae are a quite usual matter in physics of the rocks science. In this work, empirical relationships connecting Young Modulus with longitudinal wave velocity are presented. Intervals of applicability are established depending whether that velocity is greater or not than 1000 m/seg. Also the attainment of Poisson number by means of this process is indicated.

In continuation great discrepancies are shown between Young Modulus values when it is calculated by means of different static compression methods in laboratory, specially when using electrical strain-gages and in the case of applying a mechanically magnified deflection method (where the movement of a plunger placed in contact with the sample is transmitted to produce stress-displacement curves in strength essays). A series of those essays on various types of rocks are presented, the results being less unstable in the case of essays with breccia than in those done with granodiorite.

1. INTRODUCCION. -

En este estudio se dan a conocer propiedades físicas características de las rocas que constituyen la Mina Chuquicamata, información que se obtuvo en terreno y posteriormente en laboratorio. Los valores resultantes de las experiencias en terreno se comparan con los obtenidos en laboratorio, ampliándose de esta manera el margen del estudio al introducir la idea de correlación do los diversos métodos de medición de propiedades físicas.

El presente trabajo se inserta en un proyecto general denominado Determinación de Propiedades Resistentes, Amortiguamiento y Constantes Elásticas en Rocas y Suelos de Chile que se desarrolla en el Departamento de Geofísica, Universidad de Chile. Corresponde aquí el estudio de la zona en que se encuer tra la Mina Chuquicamata.

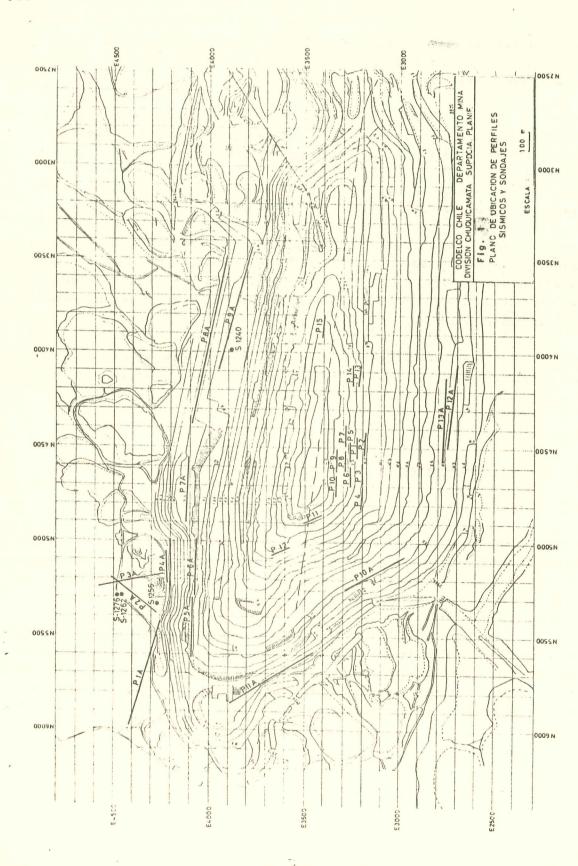
El trabajo de terreno de efectuó durante el año 1977. En él se real zaron 28 perfiles sísmicos de refracción para el registro de ondas longitudina les y 13 experiencias para el registro de ondas transversales, cuya interpretación es fundamental para la determinación de las propiedades elásticas "in siglos resultados obtenidos en esta etapa del estudio son el fondo sobre el cual

se estructura el resto de la investigación. Para la ubicación de los perfiles sísmicos se eligieron zonas geológicas estructuralmente características en cuan to a su composición macroscópica.

Los resultados obtenidos en laboratorio que estudian diversas cantida des físicas, tales como velocidades de propagación de pulsos, porosidad, grado de alteración y elasticidad, fueron obtenidos de colpas y de algunas muestras de sondajes existentes en las zonas donde se efectuaron las experiencias sísmicas. De esta manera se pudieron comparar las velocidades medias "in situ" con los pulsos longitudinales obtenidos en laboratorio.

En consideración a las diferentes condiciones en que se encuentra el material "in situ" y muestras de éste en laboratorio, se realiza un estudio com parado de características físicas que incluye además la formulación de relaciones empíricas que permiten conocer los módulos elásticos contándose solamente con valores de velocidad de ondas longitudinales.

Se presentan además los resultados contradictorios en la obtención del Módulo de Young mediante los métodos estáticos de strain-gage y deflectóme tro aplicados en diversos tipos de rocas.


2. ANTECEDENTES GENERALES .-

El trabajo en terreno se ejecutó en dos períodos en los cuales se efectuaron 28 perfiles sísmicos para el registro de ondas longitudinales y 13 experiencias para el registro de ondas transversales. Estas últimas se ubicaron en las mismas líneas donde se obtuvo el registro de ondas longitudinales (Verfig. 1, plano de ubicación).

Para la generación de pulsos longitudinales se empleó amón-gelatina de 60% de potencia, detonada mediante fulminante eléctrico; en cambio, para la generación de pulsos transversales, se utilizó el método denominado Ita-Tatakique consiste en dar un golpe sobre el cabezal de un durmiente que va dispuesto convenientemente y perpendicular al tendido de geófonos.

Estas experiencias se realizaron en las siguientes zonas:

- Experiencia 1 zona perfil 1
- Experiencia 2 zona perfil 2

- Experiencia 3 zona perfil 3
- Experiencia 4 zona perfil 4
- Experiencia 5 zona perfil 5-6
- Experiencia 6 zona perfil 12
- Experiencia 7 zona perfil 11
- Experiencia 8 zona perfil 1 A 28 S+N *
- Experiencia 9 zona perfil 7 A 184 N+N *
- Experiencia 10 zona perfil 8 A 392 N+N *
- Experiencia 11 zona perfil 10 A 160 W+E *
- Experiencia 12 zona perfil 11 A 28 E→W *
- Experiencia 13 zona perfil 12 A 144 N+S *
- (*) Estas experiencias, efectuadas en el segundo período, estaban ubicadas en algún sector de los perfiles para el registro de pulsos longitudinales. De esta forma la ubicación está dada de la siguiente manera: por ejemplo, 28 S÷N significa que en la experiencia 8 el golpe de mazo sobre el cabezal se dio a 28 metros del punto de disparo Sur (S) más extremo del perfil pa ra ondas longitudinales.

3. RESULTADOS DE INTERPRETACION DE REGISTROS OBTENIDOS EN TERRENO.-

Las fórmulas utilizadas en la determinación del Módulo de Young (Ε) y Coeficiente de Poisson (σ) provienen de relaciones elementales de la teoría de elasticidad. Expresadas en función de velocidades de ondas longitudinales y transversales, las fórmulas aquí planteadas son las que comúnmente aparecen en la teoría de la elasticidad y aplicaciones geofísicas, subordinadas, claro está, a la complejidad del material del suelo; ellas son:

$$\sigma = \frac{1/2(v_p/v_s)^2 - 1}{(v_p/v_s)^2 - 1}$$

$$E = 2 \rho v_s^2 (1 + \sigma)$$
(1)

Donde: vp: velocidad de ondas longitudinales "in situ",

v_s: velocidad de ondas transversales "in sítu".

ρ: densidad del material.

Estas expresiones nos permiten obtener los parámetros E y σ dinámicamente si conocemos en una zona determinada v_p , v_s y ρ . En la Tabla I se muestran los resultados obtenidos a través de las fórmulas anteriores.

En la fórmula (1), la propagación de errores en la medición de v y v_s , puede ocasionar una imprecisión de hasta ± 0.2 σ en los valores del Coeficiente de Poisson (σ) en los casos desfavorables. En la Tabla I aparecen las densidades de colpas de superficie en el lugar donde se trazaron los perfiles no se realizó un estudio de la variación de la densidad según la profundidad (además, no se contaba con sondajes en la zona de estas experiencias). Estas consideraciones llevan a establecer un rango de imprecisión del Módulo de Young (E), de ± 0.1 E en el caso de capas superficiales, y de ± 0.2 E en el caso de capas más profundas, en circunstancias desfavorables.

En las experiencias 6 y 7 de la Tabla I no se pudo identificar en los sismogramas las primeras llegadas de las ondas transversales de la primera capa, por lo que no aparecen en la Tabla. En las experiencias 3 y 5 no se pudo obtener resultado alguno.

4. ENSAYOS EN LABORATORIO. -

El estudio realizado en laboratorio para determinar las propiedades físicas de las rocas del área de Chuquicamata se basó en colpas recogidas en terreno y en muestras de sondajes ubicados en las zonas tratadas mediante prospección sísmica.

En laboratorio se realizaron medidas de velocidad de ondas longitudinales, peso específico, porosidad (p), índice de alteración (i), y ensayos de elasticidad. Las relaciones fundamentales utilizadas en los ensayos correspondientes a la determinación de porosidad e índice de alteración son respectivamente:

$$p = \frac{P_s - P_d}{V_d}$$
 (3) $i = \frac{P_s - P_d}{P_d}$ (4)

en que:

V_d: volumen determinado por medida hidrostática de la muestra seca

P_d: peso de la muestra seca (110°C durante 24 horas).

P_s: peso de la muestra saturada (durante 24 horas).

TABLA I

	ρ(gr/cm³)	v _p (m/seg)	v _s (m/seg)	σ	E(Kgf/cm ²)
xperiencia 1					
la. capa	2.55	1380	590	0.39	24500
2a. capa	2.55	2500	1460	0.24	135000
3a. capa	2.55	4200	2500	0.23	392100
xperiencia 2					(0070
la. capa	2.69	1700	960	0.27	62970
2a. capa	2.69	3500	2000	0.26	271150
xperiencia 4					
la. capa	2.75	1000	570	0.26	159890
2a. capa	2.75	2800	1530	0.25	159090
Experiencia 6					
la. capa			000	0.25	65250
2a. capa	2.74	1700 3300	980 1960	0.23	258150
3.a capa	2.74	3300	1,000	0.27	
Experiencia 7					800
la. capa		1800	890	0.28	52330
2a. capa	2.61	2700	1850	0.25	223320
За. сара	2.01	2700			
Experiencia 8		500	270	0.29	4700
la. capa	2.50	1500	910	0.21	50100
2a. capa	2.50	1,500			
Experiencia 9		5.10	260	0.33	4550
la. capa	2.53	3900	2110	0.29	290600
2a. capa	2.53	3900	2110	0.25	
Experiencia 1	0	700	200	0.34	10490
la. capa	2.71	780 2900	380 1600	0.28	177600
2a. capa	2.71	2900	1000	0.20	
Experiencia 1	1 2.45	940	500	0.30	15930
la. capa 2a. capa	2.45	2700	1480	. 0.29	138450
Experiencia 1	2				
la. capa	2.68	1000	530	0.30	
2a. capa	2.68	1770	1080	0.20	75020
Experiencia 1	13				
la. capa	2.64	900	490	0.29	
	2.64	1650	960	0.24	6034

El índice de alteración será relacionado en su restricción a las variaciones del volumen vacío de las muestras rocosas, dependiendo del tipo y edad de la masa rocosa. Se ha podido establecer una relación entre la edad de una roca y su índice de alteración (i); en general, las formaciones más recientes poseen un índice de alteración superior al de las más antiguas. Es interesante observar que la diferencia entre un índice de alteración medido y su valor standard puede indicar el grado de alteración de una roca. En general, esta propiedad es bastante clara en el conjunto de muestras ensayadas en laboratorio; en el caso particular de las granodioritas el valor standard del índice de alteración varía entre 0.4 y 1.3.

En las Tablas II y III se presentan los resultados finales de medici de velocidades, porosidad y alteración, en que:

- z : profundidad según vertical a que corresponde una muestra del s daje.
- v_p^* : velocidad de pulsos longitudinales en probetas secas (24 horas 110°C).
- v_{ps}^{*} : velocidad de pulsos longitudinales en probetas saturadas (dura te 24 horas).
- p : porosidad (definida por relación (3)).
- i : Índice de alteración (definido por relación (4)).

Para la medición de velocidades en ensayos de laboratorio se contó con un auscultador dinámico LEA S.B.R.3, mediante el cual se estudió la propagación de pulsos longitudinales producidos por cristales piezoeléctricos X-cut (El equipo no contaba con cristales Y-cut ni XY-cut). Se llevaron a cabo tres mediciones para cada muestra. Los valores de velocidades entregados en la Tabla II deben considerarse aproximados en el rango de ±50/seg a partir de los mísmos. Los pulsos generados por el auscultador dinámico son de una frecuencia de 100.000 Hz.

En las Tablas II y III se observa en general un aumento de la velocida de propagación de los pulsos longitudinales al ser saturadas las muestras. Esto, como sabemos, es lo que se espera al ser ocupados los huecos vacíos en e material por una substancia de cierta densidad. Observamos, eso sí, que los valores de porosidad no indican la variación de velocidad que se llevará a cabo luego de saturada una muestra determinada.

Si graficamos v_p^*/v_p^* versus porosidad p (Fig. 2) se obtiene una distribución de puntos sin tendencia definida; esto está de acuerdo con las observaciones realizadas por Gregory (1976) en rocas a presión cercana a la atmosférica.

Los efectos que produce un fluido en la velocidad de propagación de una onda dependen de varios factores, los que actúan combinadamente en la determinación de la velocidad, de manera que la influencia de un sólo factor generalmente no se puede predecir cuantitativamente. Algunos de estos factores son la compresibilidad y densidad del fluido, el acoplamiento acústico intergranular (microfracturas en la cementación) y la interacción química entre fluido y sólido alrededor de los contactos granulares; la importancia relati-

680
-
-
_
4
~
-
40

Perfil , v* (m/seg) P- 15 P- 25 P- 3 3410 P- 25 P- 4 3250 P- 55 P- 55 P- 55 P- 55 P- 56 P- 7 P- 95 P- 95 P- 95 P- 10 P- 10 P- 10 P- 10 P- 10Ab P- 10Ab P- 11Ab P- 11Ab P- 12Ab P- 12Ab P- 11Ab P- 12Ab P-					z (m)	C	2		
	g) v* (m/seg)	0 €	-	5-1240	9 0	4000	4240	1.	4.0
					49	4120	0484	1.2	0.5
		,		5-1256			6	-	-
	3780	6.9	2.9		23	3500	3500	7. 4	
			٥		9 .	2930	2900	ם נ	
	3770	3.0	1.1		-7 -7	3650	3880	v .	-0"
	000	4.1	1.6		66	3600	3970	4.4	
					107	3710	3940	9.9	2.7
	4245	1.6	9.0		146	3990	3900	5.6	2.4
	4630	6.0	4.0		176	4390	4480	2.0	0.8
		,			192	0604	4390	3.3	1.3
				5-1262				2	
				Chart Citizens Citize	4	3100	2730	6.9	2.8
					00	9000	4200	3.4	1.4
					20	0494	0697	0.7	0.5
					32	4310	4200	2.1	0.8
					44	3110	3470	4.2	00
		Section of the sectio	01.00		52	060%	4360	2.0	0.5
	4320	2.2	1.0		77	5010	5070	1.6	9.0
					117	4570	4770	.00	0.5
	4320	2,1	1.0		117	4260	0674	1.9	0.5
					133	4120	41.20	1.5	9.0
	3910	2.1	6.0		149	3480	3680	4.7	1.5
				5-1276				•	
	2090	2.5	1.0		9	4010	4360	6.3	-
			-		24	4390	4460	4.0	0.5
					31	4750	4770	4.0	0.2
					35	4570	7,600	1.7	0.7
					51	3820	3980	2.4	1.0

va de cada uno de estos factores depende de la composición de la roca, el carácter y magnitud de la porosidad y de las condiciones del ambiente (presión y temperatura). En el caso de la relación v*/v versus porosidad se obtiene una tendencia definida cuando los ensayos se efectúan a grandes presiones de confinamiento; de esta forma Gregory (1976) pudo ajustar un polinomio de cuarto grado para rocas metamórficas sometidas a una presión confinante de 700 atmósferas.

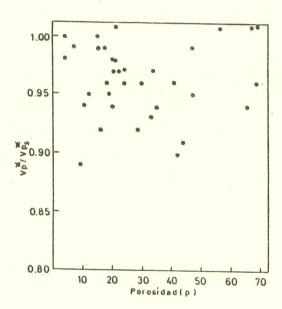


FIG. 2 Distribución de los cocientes de velocidades de pulsos longitudinales en roca seca (v_p^*) y en roca saturada (v_{ps}^*) con respecto a la porosidad de las muestras en ensayos realizados a presión atmosférica en la boratorio.

También se puede observar en las Tablas II y III que las muestras co un alto índice de alteración son las que aparecen más anómalas en su comportamiento luego del proceso de saturación. Se ha podido establecer una correlación entre la velocidad v_p^{\star} de los pulsos longitudinales con el índice de alteración, que es interesante ya que no necesita gran presión de confinamiento. La Fig. 3 presenta la relación ajustada por mínimos cuadrados; observamos también que en rocas con un alto índice de alteración, la velocidad v_p^{\star} es menor que en aquellas con índice de alteración más cercano al rango 0.4-1.3 propio de las granodioritas. Si se relaciona este índice con el grado de alteración de la roca y se sabe que en los materiales alterados la velocidad de propagación disentanye, se puede decir que existe una concordancia con lo observado.

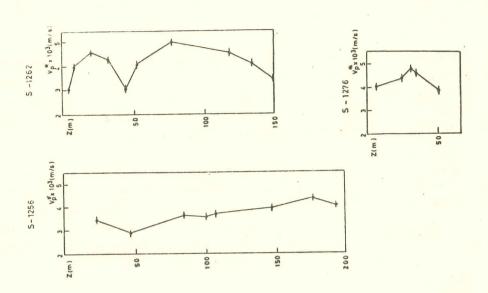
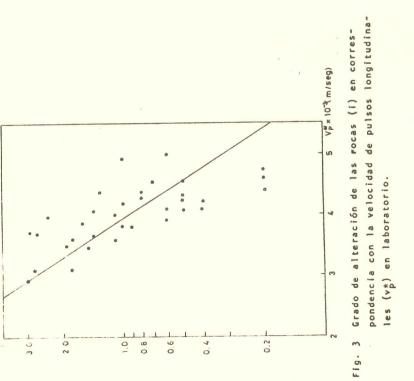



Fig. 4 Variación de la velocidad en sondajes, según ensayos de propagación de pulsos longitudinales en muestras de laboratorio.

En la Fig. 4 se presentan los perfiles de velocidad de los sondajes indicándose un rango de variación de la velocidad basándose en la dispersión de valores en muestras continuas de un mismo sondaje. (Las barras horizonta-les indican el error calculado).

Observando la Fig. 4, para perfiles de sondajes ubicados en una mis ma zona se detectó un estrato de baja velocidad (v*) que se insinúa por una s la medición en cada perfil, y estaría a una profundidad de 50 m en la zona de perfil 1 A. La aparición de capas de baja velocidad en la corteza no es muy frecuente y su aparición puede deberse a múltiples mecanismos.

En el sondaje S-1262 se observa una disminución sistemática de la volocidad con la profundidad; esta tendencia contradice lo que se espera en cua to a la velocidad de propagación de las ondas sísmicas en profundidad. De ta manera que sería necesario medir otros parámetros que pudieran esclarecer esta anomalía. Para este efecto se realizaron ensayos de compresión simple y dete minación del Módulo de Young por medio del Deflectómetro. (Ver Tabla IV).

En la Tabla IV observamos que:

a) Los ensayos adicionales para esclarecer la disminución sistemátic

TABLA IV

Sondaje		v*(m/seg)	E _{DF} (Kgf/cm ²)	Ruptura
	z (m)			(Kgf/cm²)
S-1262				
	8	4060	78100	
	32	4310	184600	683
	£4 £4	3110	67300	155
	52	4090	120700	473
	77	5010	160000	
	117	4570	186270	637
	117	4260	91100	426
	133	4120	220000	612
	149	3480	169000	787
5-1276				
	24	4390	148500	381
	35	4570	120000	1457
	51	3820	166600	512

de la velocidad con la profundidad son ambiguos como para aclarar la anomalía presentada: los Módulos de Young no mantienen una tendencia definida de variación; el esfuerzo de ruptura, sin embargo, aumenta para muestras ubicadas a mayor profundidad en la zona anómala.

b) La zona de baja velocidad común en los sondajes mostrados en la Fig. 4, también se insinúa a través del Módulo de Young determinado mediante Deflectómetro (Tabla IV), siendo mucho menor que los de las muestras correspondientes a estratos superiores e inferiores a ella. La ruptura se produce también con un esfuerzo menor que los necesarios para la ruptura de muestras correspondientes a las capas superiores e inferiores. Hay que notar que las apreciaciones anteriormente expuestas corresponden a la observación del sondaje \$1262.

De lo observado anteriormente se puede decir:

- a) La discordancia y falta de unidad de los ensayos en muestras correspondientes a una zona hipotética de decrecimiento sistemático de la velocidad indicadas por el sondaje S-1262, hacen considerar la intervención de factores extraños en la determinación de las velocidades correctas. Una larga "exposición" de las muestras y/o una influencia específica en este caso del efecto de extracción de la muestra del medio confinante pueden ser indicadores de un comportamiento anómalo. Además, un comportamiento de esa naturaleza no se observa en el sondaje S-1256 (de la misma zona), y que alcanza capas tan profundas como las del sondaje S-1262.
- b) La concordancia en la ubicación de la zona de baja velocidad que muestran los sondajes y la coherencia que dan los ensayos de elasticidad, hacen que tal zona pueda ser considerada como real y no producto de la interpretación de un fenómeno físico aislado.

En las Tablas V y VI se muestra la correlación de velocidades obten<u>i</u> das "in situ" (de las capas investigadas más profundas) con las velocidades obtenidas en laboratorio, y de las velocidades de cada capa con velocidades obtenidas mediante muestras de sondajes cercanos a algunos perfiles sísmicos (perfiles P-1A, P-2A, P-3A).

Como se puede observar, en cuanto a las velocidades"in situ'y en labo ratorio en el caso de muestras de colpas de las zonas de los perfiles, según se muestra en la Tabla V, hay gran correspondencia; se ha tomado ahí la velocidad

TABLA VI

e ٦٠٠	v _p (m/seg) (in situ)	v#(m/seg) (laborat.)	v* (m/seg) ps (laborat.)	Perfil y sondaje Protundidad	Protundidad	(in situ)	(en laborat.)
	4200	4250		P-1A/S-1256	23	1500	3490
	3500	3410			8 4	3500	3650
	4000	3870	0404		66	3500	3600
	2800	2550			107	3500	3710
	2900	3920	4245				
	2900	2840					
	2600	2930		P-2A/S-1262			
	3500	3560	3620		4	1400	3100
	3200	3710			00	3250	0904
	3200	2620			20	3250	0494
	3300	3420			52	3250	0604
	3900	4200	4320				
	3850	3950					
	3700	3820	3910	P-3A/S-1262	η	1250	3100
	4300	4930	2090		00 1	2500	4060
					20	3700	0494

"in situ"de las capas más profundas con la que es válido comparar la velocidad medida en laboratorio en muestras de colpas seleccionadas por su constitución no alterada, contraria al carácter alterado de las capas superficiales.

En la Tabla VI se observa que no existe correspondencia entre las ve locidades de muestras específicas y las obtenidas "in situ". Esto se ve principalmente para las capas superficiales, y también en capas a mayor profundidad pero en menor grado. Los valores mayores de velocidad obtenidos en laboratorio reafirman el carácter local de tales muestras - que no considera la fracturación y alteración del suelo.

5. ESTUDIO DE FORMULAS EMPIRICAS.-

Considerando algunos problemas que se presentan en algunos casos en el registro de las ondas transversales, se ha intentado ajustar fórmulas empíricas a mediciones efectuadas "in situ", fórmulas que consideran la velocidad de propagación de las ondas longitudinales. Brown y Robertshow (1952-1953) confeccionaron un gráfico que sirvió para la determinación del Módulo de Young en el basamento de una presa en Irak. Hawkins (1969) ajustó una curva a tales datos resultando la siguiente expresión:

$$E = 1.134 \times 10^{-3} (v_p)^{2.34} (Kgf/cm^2)$$
 (5)

donde v se expresa en m/seg.

En nuestro caso se ajustaron los valores del Módulo de Young del Cuadro I y se obtuvieron las siguientes relaciones:

$$E = 2.76 \times 10^{-3} (v_p)^{2.287} (Kgf/cm^2) para v_p < que 1000 m/seg$$
 (6)

$$f = 3.12 \times 10^{-3} (v_p)^{2/244} (Kgf/cm^2) para v_p > que 1000 m/seg$$
 (7)

Se observó que los valores entregados por la relación (7) son mayores que los que entrega la fórmula (5), basada en un gran número de datos. Por es-

te motivo se utilizará la relación (5) cuando se tenga velocidades mayores que 1000 m/seg.; por otra parte se utilizará la relación (6) para valores de v_p < 1000 m/seg, ya que la relación (5) no contempla estos casos (esta última elección mostrará sólo el grado de precisión del ajuste realizado, ya que se aplica sobre los mismos datos con los cuales fue realizado).

Si no se tuvieran datos de ondas transversales y se estima el Módulo de Young por las expresiones (5) ó (6) se puede también calcular el Coeficien de Poisson (σ) partiendo de las siguientes relaciones:

$$\sigma = \frac{(\beta^2 + 4\beta)^{1/2} - \beta}{2} \tag{8}$$

con

$$\beta = \frac{1}{2} \left(1 - \frac{E}{\rho v_p^2} \right)$$
 (9)

Si se expresa E por las ecuaciones (5) y (6) el número β adquiere l forma:

$$\beta = \frac{1}{2} \left(1 - \frac{0.276}{\rho} v_p^{0.287} \right) \text{ para } v_p \le 1000 \text{ (m/seg)}$$
 (10)

$$\beta = \frac{1}{2} \left(1 - \frac{0.1134}{\rho} v_p^{0.34} \right) \text{ para } v_p > 1000 \text{ (m/seg)}$$
 (11)

ρ expresado en (gr/cm³).

En la siguiente Tabla VII se dan los valores de (σ) y (Ε) obtenidos dinámicamente y los valores calculados mediante fórmulas empíricas.

En la Tabla VII se observa una buena correlación entre los valores de (E) obtenidos "in situ" y los calculados a partir de la fórmula (5) para valocidades v_p > 2000 m/seg. Para velocidades v_p entre 1000 y 2000 (m/seg) aparecen discrepancias hasta de un 50%. En este caso la relación (7) presentada aquí podría utilizarse para este propósito.

En cuanto al coeficiente de Poisson (σ) , hay buena correlación en casos en que $v_p \le 1000$ m/seg. Cuando $v_p > 1000$ m/seg, hay gran discordancia los valores entregados por las fórmulas (8) y (11) y los valores calculados método dinámico "in situ"; esto está relacionado con la utilización de la fó la (5) de Hawkins en la obtención del Módulo de Young E, del cual se hace u

TABLA VII

	v (m/seg)	IN SITU	(Din.)	FORMULAS E	MPIRICAS
	P	E(Kgf/c	m²) σ	E(Kgf/cm	²) σ
Exp. 1					
la. capa	1380	24500	0.39	25230	0.38
2a. capa	2500	135000	0.24	101340	0.35
За. сара	4200	392100	0.23	341210	0.29
Exp. 2					
la. capa	1700	62970	0.27	41100	0.38
2a. capa	3500	271150	0.26	222710	0.33
Exp. 4					
la. capa	1000	22590	0.26	20040	0.31
2a. capa	2800	159890	0.25	132230	0.35
Exp. 6					
2a. capa	1700	65250	0.25	41100	0.38
3a. capa	3300	258150	0.23	194060	0.34
Exp. 7					
2a. capa	1800	52330	0.28	46980	0.37
За. сара	2700	223320	0.25	121340	0.34
Exp. 8					
la. capa	500	4700	0.29	4110	0.34
2a. capa	1500	50100	0.21	30670	0.38
Exp. 9					
la. capa	510	4550	0.33	4340	0.34
2a. capa	3900	290600	0.29	286880	0.30
Exp. 10					
la. capa	780	10490	0.34	11190	0.32
2a. capa	2900	177600	0.28	143420	0.36
Exp. 11					
la. capa	940	15930	0.30	17270	0.27
2a. capa	2700	138450	0.29	121340	0.33
Exp. 12	Application of the Anniagonal State of Contraction on the State of the Contraction of Contractio		PARTIE WHEN PROPERTY CONTRACTOR	-	
la. capa	1000	19570	0.30	20040	0.30
2a. capa	1770	75020	0.20	45170	0.38
	THE AND REAL PROPERTY AND ADDRESS OF THE PARTY	12000	V. 20	17170	0.70
Exp. 13	200	16250	0.20	15750	0.30
la. capa	900	16350	0.29	15750	0.30
2a. capa	1650	00340	0.24	38330	0.38

en el cálculo del Coeficiente de Poisson σ (fórmulas (8) y (11)). Las observaciones anteriores hacen prever un desglose de la fórmula (5) en el rango de velocidades v_p que le es propio.

Las consideraciones referentes a la precisión de los valores del Coeficiente de Poisson y del Módulo de Young, anotadas precedentemente a la Tabla I - y que pueden extenderse al caso de fórmulas empíricas -, no significan una variación apreciable de lo discutido en esta parte.

6. RESULTADOS DE ENSAYOS DE ELASTICIDAD EN LABORATORIO.-

En lo que sigue se dan a conocer el Módulo de Young y Coeficiente de Poisson obtenidos por medidas estáticas de laboratorio. Estas medidas fueron obtenidas a través de estampilla strain-gage, deflectómetro y métodos de sensores (LVDT).

Por razones técnicas, el Coeficiente de Poisson (σ) fue calculado estáticamente por una combinación del método por deflectómetro y sensores LVDT (σ^*).

En las Tablas VIII y IX se presentan los resultados de elasticidad. Con la finalidad de mejorar el estudio de una posible correlación, se incluyen resultados adicionales de un sondaje (S-881) que no pertenece a este estudio.

Se observa que existe una gran discrepancia entre los valores del Módulo de Young y Coeficiente de Poisson calculados por distintos métodos estáticos en laboratorio. Esto se puede deber a que los volúmenes de roca compromet<u>i</u> da en los diversos ensayos no son los mismos. Por ejemplo, la estampilla straigage entrega resultados que pueden ser de carácter local por considerar una pe-

TABLA VIII

MUESTRA	1	DEFLECT.	10	LVDT
		E		σ*
P-11	Aa	133000		0.05
P-12	Aa	318700		0.27
5-1256	(23)	32000		
S-1256	(46)	37100		
S-1262	(8)	78100		
5-1262	(32)	184600		
5-1262	(44)	67300		
S-1262	(52)	120700		
5-1262	(77)	160000		0.06
5-1262	(117)	186270		
S-1262	(133)	220000		
5-1262	(149)	169000		
5-1276	(24)	148500		
5-1276	(35)	120000		0.03
5-1276	(51)	166600		0.07

TABLA IX

			marine and a second second second				
MUES	TRA	DEFLECT.	- LVDT	LV	T	STRAIN-	GAGE
		Ε	a *	E	σ	E	σ
Principal de la Company de	edition valual games into which he interne						
s-88 i	(1)	174000	0.08	350000	0.17		
s-881	(11)	72540		1,77200	0.13		
5-881	(111)			130500	0.15	91860	0.19

TABLA X

	DEFLECTOMETRO	STRAIN - GAGE	ESG- EDF
TIPO DE ROCA	DF (10 ² Kgf/cm ²)	E _{SG} (10 ² Kgf/cm ²)	EDF
GRANODIORITA	2147	3592	0.67
	1614	2871	0.78
	2258	3888	0.72
	2138	4716	1.21
	2307	4658 4687	1.41
	1946	5031	0.37
	3671	5434	0.72
	3168 1144	1399	0.22
	1513	2054	0.36
	2812	4871	0.73
	1964	5161	1.63
	2020	6721	2.33
	2561	4913	0.92
	1831	5066	1.77
	1765	1547	
CUARZODIORITA	3350	5770	0.72
	2520	3950	0.57
	3670	5690	0.55
BRECHA	2944	4646	0.58
	21129	4308	0.77
	3505	6011	0.72
	2973	4670	0.57
	2917 2863	3929 4620	0.35
ANDECITA	1764	2961	0.68
ANDESITA	1828	2934	0.61
	1331	3244	1.44
	1522	2910	0.91
	1960	3380	0.72
	850	1310	0.54
	600	530	
ANDESITA POTASI	CA 4540	5950	0.31
	5420	5970	0.10
	4640	3260	
	5580	3950	

queña porción de la muestra de la roca a ensayar, a menos que ella esté ubicado justamente en una región de falla en la muestra.

La discrepancia en los valores de σ^{\star} puede ser producto de la combinción de medidas de deformación (Deflectómetro y sensores LVDT).

En la Tabla X se exponen resultados de ensayos en diversas rocas co el objeto de mostrar la gran diferencia de valores del Módulo de Young entreg dos por deflectómetro y estampilla strain-gage (Datos proporcionados por el CIMM). Se ve en la tabla descrita que la mayoría de los valores de E obtenid por estampilla strain-gage son mayores que los obtenidos por deflectómetro.

Con el objeto de investigar si el valor más elevado de E_{SG} está en lación con el valor de E_{DF} , se ha calculado el coeficiente $(\frac{E_{SG}-E_{DF}}{E_{DF}})$ para todo los casos en que $E_{SG} > E_{DF}$, donde se ha escrito:

E_{SG}: Módulo de Young calculado por estampilla strain-gage.

E_{DF}: Módulo de Young calculado por deflectómetro.

Los resultados indican, en general, una ausencia de correlación. dispersión mayor se encuentra en las granodioritas (rocas correspondientes a estudio). Si se calcula la varianza (S²) del coeficiente ($\frac{ESG-EDF}{EDF}$) sin consirar los valores más apartados de la media del coeficiente, se obtiene que S² es 0.218 en las granodioritas, 0.020 en andesitas y 0.008 en brechas.

Estos valores se deben considerar en forma relativa unos a otros e dican gran dispersión del coeficiente señalado en el caso de la granodiorita se considera su valor más estable en los ensayos realizados en brechas.

7. CONCLUSIONES . -

En este estudio, realizado en estructuras geológicas macroscópicame te diferentes, las propiedades físicas de las rocas son aproximadamente semej tes en todas las estructuras, por provenir de una formación común como es el fido granodiorítico. Los resultados de la investigación en terreno y en labo torio permiten establecer las siguientes conclusiones:

- a) De la interpretación de los registros de ondas longitudinales en terreno se detectaron hasta tres superficies horizontales de discontinuidad, presentándose siempre una gran alteración en la primera capa del suelo. En las experiencias de registro de ondas transversales se logró detectar en algunos casos hasta la tercera capa del suelo, aunque en algunas de ellas no fue posible identificar sus registros. Es necesario advertir que el registro de ondas transversales puede confundirse con el de ondas superficiales, lo que exige examinar cuidadosamente este tipo de experiencias que son básicas para la determinación de módulos elásticos dinámicos in situ.
- b) Se han determinado módulos de Young y Poisson que guardan relación con el grado de compactación del suelo y la aplicación de fórmulas empíricas permite observar que la relación de Hawkins es en general de utilidad só lo para velocidades $v_p > 2000 \ (\text{m/seg})$. Se proponen otras fórmulas empíricas a partir de los datos de nuestras propias experiencias quedando ellas sujetas al análisis de futuras investigaciones. Hacemos notar que en el caso de obtención de velocidades $v_p < 1000 \ (\text{m/seg})$ el problema puede tener complicaciones adicionales si consideramos la gran alteración de los terrenos donde se registran tales velocidades, siendo difícil suponer allí un comportamiento aproxima damente elástico.
- c) Los valores del módulo de Poisson obtenidos a partir de la fórmu la empírica de Hawkins desacuerdan con los obtenidos por el registro de ondas longítudinales y transversales in situ, y reafirman la necesidad de revisión de tal fórmula.
- d) La comparación de velocidades v_p medidas in situ con velocidades v_p obtenidas a partir de ensayos en laboratorio indica una buena correlación en el caso de muestras de colpas correspondientes a las zonas donde se efectuaron los perfiles sísmicos, si se toman en cuenta las capas no superficiales. En el caso de muestras de sondajes, la correlación entre ambas medidas de velocidad desmejora, haciéndose notar la necesidad de correcciones por anisotropía, heterogeneidad y variación de las condiciones de contorno de la muestra en el paso del terreno al laboratorio.
- e) En ensayos de laboratorio se observa un aumento de la velocidad de propagación de pulsos longitudinales al ser saturadas las muestras; sin em bargo, la variación experimentada no está en relación con los valores de poro sidad de ellas, indicando esto la dependencía compleja de la velocidad de propagación de diversos factores como el acoplamiento acústico intergranular y la interacción química entre fluido y sólido alrededor de los contactos granulares. Para estudiar en mejor forma la relación de tal variación con la

porosidad característica de la muestra, se propone efectuar ensayos con muestras sometidas a presión para acercarse así a la situación de presión confinante existente en el terreno.

- f) La determinación en laboratorio del índice i ha permitido establecer su relación con el grado de alteración de la roca, estando los valores de tal índice en acuerdo con la velocidad de propagación de pulsos longitudinales en las muestras.
- g) Por medio de los ensayos de laboratorio se ha podido, también, determinar una zona de baja velocidad al profundizar en los estratos del sue lo correspondientes a la zona de ubicación de los sondajes. El hallazgo de tal capa confirmado por ensayos de elasticicad en las muestras que corresponderían a tal estrato advierte sobre la conveniencia de realización de al gún método directo de prospección en las zonas donde de efectúen perfiles por refracción sísmica.
- h) La consideración en conjunto de diversos ensayos de laboratorio permite descartar la aparición de una zona de decrecimiento sistemático de la velocidad de propagación de ondas sísmicas indicada por experiencias en muestras de un sondaje. Esto hace observar la significación de la correlación de propiedades físicas de rocas, al mismo tiempo que advierte sobre el tratamien to especial a que deben someterse muestras del terreno para que no sean afectadas grandemente por el proceso de extracción del medio confinante y exposición en condiciones que no les son propias.
- i) Medidas de elasticidad llevadas a cabo en laboratorio por medio de diversos métodos indican una ausencia de relación en los resultados, debida en gran medida a la caracterización mayor o menormente local que esos métodos hacen de la muestra. El análisis de ensayos efectuados en distintos tipos de rocas muestra que en la mayoría de los casos no hay relación entre la discrepancia en mediciones de módulo de Young por medio de deflectómetro y estampillas strain-gage y el valor entregado por uno de estos métodos, haciéndose así muy poco probable una correlación. Las mediciones llevadas a cabo con sensores LVDT están en cierto grado de acuerdo con los valores del módulo de Young entregados por la aplicación de fórmulas empíricas a partir de velocidades medidas en laboratorio. Siendo muy escasa la información que permite suponer lo anterior, es necesario continuar investigando en tal sentido.

AGRADECIMIENTOS . -

Los autores desean expresar sus agradecimientos al Sr. Guillermo Krstulović por la disposición mostrada en el estudio, así como a las perso nas que laboran en las siguientes entidades: Planificación Mina - Mina Chuquicamata -, Laboratorio de Mecánica de Rocas e Instituto de Investigaciones y Ensayes de Materiales - Universidad de Chile - y Laboratorio de Mecánica de Rocas - Centro de Investigación Minero-Metalúrgica.

REFERENCIAS BIBLIOGRAFICAS: -

- ARANEDA, M., y MUROZ, M.A., "Zonificación Sísmica-Interior Mina Chuquicamata" Publicaciones del Departamento de Geofísica, Universidad de Chile, Diciembre 1976.
- ARANEDA, M., "Determinación del Módulo de Young mediante Velocidad de Onda de Compresión Mina Chuquicamata". Informe Interno, CODELCO-Chuquicamata, Junio 1977.
- BETTANCOURT, E. "Estudio Sísmico Preliminar, Interior Mina Chuquicamata". Instituto de Investigaciones Geológicas, Informe SGF 75-1, 1975.
- BROWN, ROBERTSHOW. "The In Situ Measurement of Young Modulus for Rocks by a Dynamic Method". Geotechnique, Vol. 3, 1952-1953.
- CANNADAY, F., "Modulus of Elasticity of a Rock Determined by Four Different Methods". RI Bureau of Mines 65-33, 1964.
- EVISON, F.F. "An Improved Electromechanical Seismic Source Tested in Shattered Rock". New Zealand J. Sci. Technol. B., Vol. 35, 4, 1953.
- GAL'PERIN, E.I. "Vertical Seismic Profiling". Society of Exploration Geophysicists, Oklahoma, Special Publication N° 12, 1974.
- GOLDSMITH, W. "Pulse Propagation in Rocks". Proc. Eighth Symposium on Rock Mechanics, University of Minnesota, en "Failure and Breakage of Rock". C. Fairhurst (Ed.), 1967.

- GREGORY, A.R., "Fluid Saturation Effects on Dynamic Elastic Properties of Sedimentary Rocks". Geophysics Vol. 41, 5, 1976.
- HAWKINS, L., "Seismic Refraction Surveys for Civil Engineering". ABEM: Geo physical Memorandum 2/69, 1969.
- HERRERA, C. "Uso del Deflectómetro para registrar deformaciones en probetas de rocas sujetas a compresión". Laboratorio de Mecánica de Rocas (Informe Interno), Centro de Investigación Minero-Metalúrgico, 1977.
- MORALES, R. "Uso de LVDT en el Cálculo de Propiedades Elásticas de Rocas".

 Laboratorio de Mecánica de Rocas (Informe Interno), Centro de Investigación Minero-Metalúrgico, 1977.
- RENZETTI, B. "Geología y Petrogénesis de Chuquicamata". Informe D-4, Planificación Mina Chuquicamata.
- SOSKE, J. "The Blind Zone Problem in Engineering Geophysics". Geophysics, Vol. 24, 2, 1959.
- STAGG, K.C., y ZIENKIEWICZ, O.C., "Rock Mechanics in Engineering Practice".

 (Stagg and Zienkiewicz, Editors), Wiley, London, 1958.